
7
STORING DATA: DISKS & FILES

A memory is what is left when something happens and does not completely unhap-

pen.

—Edward DeBono

This chapter initiates a study of the internals of an RDBMS. In terms of the DBMS

architecture presented in Section 1.8, it covers the disk space manager, the buffer

manager, and the layer that supports the abstraction of a file of records. Later chapters

cover auxiliary structures to speed retrieval of desired subsets of the data, and the

implementation of a relational query language.

Data in a DBMS is stored on storage devices such as disks and tapes; we concentrate

on disks and cover tapes briefly. The disk space manager is responsible for keeping

track of available disk space. The file manager, which provides the abstraction of a file

of records to higher levels of DBMS code, issues requests to the disk space manager

to obtain and relinquish space on disk. The file management layer requests and frees

disk space in units of a page; the size of a page is a DBMS parameter, and typical

values are 4 KB or 8 KB. The file management layer is responsible for keeping track

of the pages in a file and for arranging records within pages.

When a record is needed for processing, it must be fetched from disk to main memory.

The page on which the record resides is determined by the file manager. Sometimes, the

file manager uses auxiliary data structures to quickly identify the page that contains

a desired record. After identifying the required page, the file manager issues a request

for the page to a layer of DBMS code called the buffer manager. The buffer manager

fetches a requested page from disk into a region of main memory called the buffer pool

and tells the file manager the location of the requested page.

We cover the above points in detail in this chapter. Section 7.1 introduces disks and

tapes. Section 7.2 describes RAID disk systems. Section 7.3 discusses how a DBMS

manages disk space, and Section 7.4 explains how a DBMS fetches data from disk into

main memory. Section 7.5 discusses how a collection of pages is organized into a file

and how auxiliary data structures can be built to speed up retrieval of records from a

file. Section 7.6 covers different ways to arrange a collection of records on a page, and

Section 7.7 covers alternative formats for storing individual records.

195

196 Chapter 7

7.1 THE MEMORY HIERARCHY

Memory in a computer system is arranged in a hierarchy, as shown in Figure 7.1. At

the top, we have primary storage, which consists of cache and main memory, and

provides very fast access to data. Then comes secondary storage, which consists of

slower devices such as magnetic disks. Tertiary storage is the slowest class of storage

devices; for example, optical disks and tapes. Currently, the cost of a given amount of

Data satisfying request

Request for data

CPU

CACHE

MAIN MEMORY

MAGNETIC DISK

TAPE

Primary storage

Secondary storage

Tertiary storage

Figure 7.1 The Memory Hierarchy

main memory is about 100 times the cost of the same amount of disk space, and tapes

are even less expensive than disks. Slower storage devices such as tapes and disks play

an important role in database systems because the amount of data is typically very

large. Since buying enough main memory to store all data is prohibitively expensive, we

must store data on tapes and disks and build database systems that can retrieve data

from lower levels of the memory hierarchy into main memory as needed for processing.

There are reasons other than cost for storing data on secondary and tertiary storage.

On systems with 32-bit addressing, only 232 bytes can be directly referenced in main

memory; the number of data objects may exceed this number! Further, data must

be maintained across program executions. This requires storage devices that retain

information when the computer is restarted (after a shutdown or a crash); we call

such storage nonvolatile. Primary storage is usually volatile (although it is possible

to make it nonvolatile by adding a battery backup feature), whereas secondary and

tertiary storage is nonvolatile.

Tapes are relatively inexpensive and can store very large amounts of data. They are

a good choice for archival storage, that is, when we need to maintain data for a long

period but do not expect to access it very often. A Quantum DLT 4000 drive is a

typical tape device; it stores 20 GB of data and can store about twice as much by

compressing the data. It records data on 128 tape tracks, which can be thought of as a

Storing Data: Disks and Files 197

linear sequence of adjacent bytes, and supports a sustained transfer rate of 1.5 MB/sec

with uncompressed data (typically 3.0 MB/sec with compressed data). A single DLT

4000 tape drive can be used to access up to seven tapes in a stacked configuration, for

a maximum compressed data capacity of about 280 GB.

The main drawback of tapes is that they are sequential access devices. We must

essentially step through all the data in order and cannot directly access a given location

on tape. For example, to access the last byte on a tape, we would have to wind

through the entire tape first. This makes tapes unsuitable for storing operational data,

or data that is frequently accessed. Tapes are mostly used to back up operational data

periodically.

7.1.1 Magnetic Disks

Magnetic disks support direct access to a desired location and are widely used for

database applications. A DBMS provides seamless access to data on disk; applications

need not worry about whether data is in main memory or disk. To understand how

disks work, consider Figure 7.2, which shows the structure of a disk in simplified form.

Disk arm Disk head Spindle

Rotation

Platter

Tracks

Cylinder

Sectors

Arm movement

Block

Figure 7.2 Structure of a Disk

Data is stored on disk in units called disk blocks. A disk block is a contiguous

sequence of bytes and is the unit in which data is written to a disk and read from a

disk. Blocks are arranged in concentric rings called tracks, on one or more platters.

Tracks can be recorded on one or both surfaces of a platter; we refer to platters as

198 Chapter 7

single-sided or double-sided accordingly. The set of all tracks with the same diameter is

called a cylinder, because the space occupied by these tracks is shaped like a cylinder;

a cylinder contains one track per platter surface. Each track is divided into arcs called

sectors, whose size is a characteristic of the disk and cannot be changed. The size of

a disk block can be set when the disk is initialized as a multiple of the sector size.

An array of disk heads, one per recorded surface, is moved as a unit; when one head

is positioned over a block, the other heads are in identical positions with respect to

their platters. To read or write a block, a disk head must be positioned on top of the

block. As the size of a platter decreases, seek times also decrease since we have to

move a disk head a smaller distance. Typical platter diameters are 3.5 inches and 5.25

inches.

Current systems typically allow at most one disk head to read or write at any one time.

All the disk heads cannot read or write in parallel—this technique would increase data

transfer rates by a factor equal to the number of disk heads, and considerably speed

up sequential scans. The reason they cannot is that it is very difficult to ensure that

all the heads are perfectly aligned on the corresponding tracks. Current approaches

are both expensive and more prone to faults as compared to disks with a single active

head. In practice very few commercial products support this capability, and then only

in a limited way; for example, two disk heads may be able to operate in parallel.

A disk controller interfaces a disk drive to the computer. It implements commands

to read or write a sector by moving the arm assembly and transferring data to and

from the disk surfaces. A checksum is computed for when data is written to a sector

and stored with the sector. The checksum is computed again when the data on the

sector is read back. If the sector is corrupted or the read is faulty for some reason,

it is very unlikely that the checksum computed when the sector is read matches the

checksum computed when the sector was written. The controller computes checksums

and if it detects an error, it tries to read the sector again. (Of course, it signals a

failure if the sector is corrupted and read fails repeatedly.)

While direct access to any desired location in main memory takes approximately the

same time, determining the time to access a location on disk is more complicated. The

time to access a disk block has several components. Seek time is the time taken to

move the disk heads to the track on which a desired block is located. Rotational

delay is the waiting time for the desired block to rotate under the disk head; it is

the time required for half a rotation on average and is usually less than seek time.

Transfer time is the time to actually read or write the data in the block once the

head is positioned, that is, the time for the disk to rotate over the block.

Storing Data: Disks and Files 199

An example of a current disk: The IBM Deskstar 14GPX. The IBM

Deskstar 14GPX is a 3.5 inch, 14.4 GB hard disk with an average seek time of 9.1

milliseconds (msec) and an average rotational delay of 4.17 msec. However, the

time to seek from one track to the next is just 2.2 msec, the maximum seek time

is 15.5 msec. The disk has five double-sided platters that spin at 7,200 rotations

per minute. Each platter holds 3.35 GB of data, with a density of 2.6 gigabit per

square inch. The data transfer rate is about 13 MB per second. To put these

numbers in perspective, observe that a disk access takes about 10 msecs, whereas

accessing a main memory location typically takes less than 60 nanoseconds!

7.1.2 Performance Implications of Disk Structure

1. Data must be in memory for the DBMS to operate on it.

2. The unit for data transfer between disk and main memory is a block; if a single

item on a block is needed, the entire block is transferred. Reading or writing a

disk block is called an I/O (for input/output) operation.

3. The time to read or write a block varies, depending on the location of the data:

access time = seek time + rotational delay + transfer time

These observations imply that the time taken for database operations is affected sig-

nificantly by how data is stored on disks. The time for moving blocks to or from disk

usually dominates the time taken for database operations. To minimize this time, it

is necessary to locate data records strategically on disk, because of the geometry and

mechanics of disks. In essence, if two records are frequently used together, we should

place them close together. The ‘closest’ that two records can be on a disk is to be on

the same block. In decreasing order of closeness, they could be on the same track, the

same cylinder, or an adjacent cylinder.

Two records on the same block are obviously as close together as possible, because they

are read or written as part of the same block. As the platter spins, other blocks on

the track being read or written rotate under the active head. In current disk designs,

all the data on a track can be read or written in one revolution. After a track is read

or written, another disk head becomes active, and another track in the same cylinder

is read or written. This process continues until all tracks in the current cylinder are

read or written, and then the arm assembly moves (in or out) to an adjacent cylinder.

Thus, we have a natural notion of ‘closeness’ for blocks, which we can extend to a

notion of next and previous blocks.

Exploiting this notion of next by arranging records so that they are read or written

sequentially is very important for reducing the time spent in disk I/Os. Sequential

access minimizes seek time and rotational delay and is much faster than random access.

200 Chapter 7

(This observation is reinforced and elaborated in Exercises 7.5 and 7.6, and the reader

is urged to work through them.)

7.2 RAID

Disks are potential bottlenecks for system performance and storage system reliability.

Even though disk performance has been improving continuously, microprocessor per-

formance has advanced much more rapidly. The performance of microprocessors has

improved at about 50 percent or more per year, but disk access times have improved

at a rate of about 10 percent per year and disk transfer rates at a rate of about 20

percent per year. In addition, since disks contain mechanical elements, they have much

higher failure rates than electronic parts of a computer system. If a disk fails, all the

data stored on it is lost.

A disk array is an arrangement of several disks, organized so as to increase perfor-

mance and improve reliability of the resulting storage system. Performance is increased

through data striping. Data striping distributes data over several disks to give the

impression of having a single large, very fast disk. Reliability is improved through

redundancy. Instead of having a single copy of the data, redundant information is

maintained. The redundant information is carefully organized so that in case of a

disk failure, it can be used to reconstruct the contents of the failed disk. Disk arrays

that implement a combination of data striping and redundancy are called redundant

arrays of independent disks, or in short, RAID.1 Several RAID organizations, re-

ferred to as RAID levels, have been proposed. Each RAID level represents a different

trade-off between reliability and performance.

In the remainder of this section, we will first discuss data striping and redundancy and

then introduce the RAID levels that have become industry standards.

7.2.1 Data Striping

A disk array gives the user the abstraction of having a single, very large disk. If the

user issues an I/O request, we first identify the set of physical disk blocks that store

the data requested. These disk blocks may reside on a single disk in the array or may

be distributed over several disks in the array. Then the set of blocks is retrieved from

the disk(s) involved. Thus, how we distribute the data over the disks in the array

influences how many disks are involved when an I/O request is processed.

1Historically, the I in RAID stood for inexpensive, as a large number of small disks was much more

economical than a single very large disk. Today, such very large disks are not even manufactured—a

sign of the impact of RAID.

Storing Data: Disks and Files 201

Redundancy schemes: Alternatives to the parity scheme include schemes based

on Hamming codes and Reed-Solomon codes. In addition to recovery from

single disk failures, Hamming codes can identify which disk has failed. Reed-

Solomon codes can recover from up to two simultaneous disk failures. A detailed

discussion of these schemes is beyond the scope of our discussion here; the bibli-

ography provides pointers for the interested reader.

In data striping, the data is segmented into equal-size partitions that are distributed

over multiple disks. The size of a partition is called the striping unit. The partitions

are usually distributed using a round robin algorithm: If the disk array consists of D

disks, then partition i is written onto disk i mod D.

As an example, consider a striping unit of a bit. Since any D successive data bits are

spread over all D data disks in the array, all I/O requests involve all disks in the array.

Since the smallest unit of transfer from a disk is a block, each I/O request involves

transfer of at least D blocks. Since we can read the D blocks from the D disks in

parallel, the transfer rate of each request is D times the transfer rate of a single disk;

each request uses the aggregated bandwidth of all disks in the array. But the disk

access time of the array is basically the access time of a single disk since all disk heads

have to move for all requests. Therefore, for a disk array with a striping unit of a single

bit, the number of requests per time unit that the array can process and the average

response time for each individual request are similar to that of a single disk.

As another example, consider a striping unit of a disk block. In this case, I/O requests

of the size of a disk block are processed by one disk in the array. If there are many I/O

requests of the size of a disk block and the requested blocks reside on different disks,

we can process all requests in parallel and thus reduce the average response time of an

I/O request. Since we distributed the striping partitions round-robin, large requests

of the size of many contiguous blocks involve all disks. We can process the request by

all disks in parallel and thus increase the transfer rate to the aggregated bandwidth of

all D disks.

7.2.2 Redundancy

While having more disks increases storage system performance, it also lowers overall

storage system reliability. Assume that the mean-time-to-failure, or MTTF, of

a single disk is 50, 000 hours (about 5.7 years). Then, the MTTF of an array of

100 disks is only 50, 000/100 = 500 hours or about 21 days, assuming that failures

occur independently and that the failure probability of a disk does not change over

time. (Actually, disks have a higher failure probability early and late in their lifetimes.

Early failures are often due to undetected manufacturing defects; late failures occur

202 Chapter 7

since the disk wears out. Failures do not occur independently either: consider a fire

in the building, an earthquake, or purchase of a set of disks that come from a ‘bad’

manufacturing batch.)

Reliability of a disk array can be increased by storing redundant information. If a

disk failure occurs, the redundant information is used to reconstruct the data on the

failed disk. Redundancy can immensely increase the MTTF of a disk array. When

incorporating redundancy into a disk array design, we have to make two choices. First,

we have to decide where to store the redundant information. We can either store the

redundant information on a small number of check disks or we can distribute the

redundant information uniformly over all disks.

The second choice we have to make is how to compute the redundant information.

Most disk arrays store parity information: In the parity scheme, an extra check disk

contains information that can be used to recover from failure of any one disk in the

array. Assume that we have a disk array with D disks and consider the first bit on

each data disk. Suppose that i of the D data bits are one. The first bit on the check

disk is set to one if i is odd, otherwise it is set to zero. This bit on the check disk is

called the parity of the data bits. The check disk contains parity information for each

set of corresponding D data bits.

To recover the value of the first bit of a failed disk we first count the number of bits

that are one on the D − 1 nonfailed disks; let this number be j. If j is odd and the

parity bit is one, or if j is even and the parity bit is zero, then the value of the bit on

the failed disk must have been zero. Otherwise, the value of the bit on the failed disk

must have been one. Thus, with parity we can recover from failure of any one disk.

Reconstruction of the lost information involves reading all data disks and the check

disk.

For example, with an additional 10 disks with redundant information, the MTTF of

our example storage system with 100 data disks can be increased to more than 250

years! What is more important, a large MTTF implies a small failure probability

during the actual usage time of the storage system, which is usually much smaller

than the reported lifetime or the MTTF. (Who actually uses 10-year-old disks?)

In a RAID system, the disk array is partitioned into reliability groups, where a

reliability group consists of a set of data disks and a set of check disks. A common

redundancy scheme (see box) is applied to each group. The number of check disks

depends on the RAID level chosen. In the remainder of this section, we assume for

ease of explanation that there is only one reliability group. The reader should keep

in mind that actual RAID implementations consist of several reliability groups, and

that the number of groups plays a role in the overall reliability of the resulting storage

system.

Storing Data: Disks and Files 203

7.2.3 Levels of Redundancy

Throughout the discussion of the different RAID levels, we consider sample data that

would just fit on four disks. That is, without any RAID technology our storage system

would consist of exactly four data disks. Depending on the RAID level chosen, the

number of additional disks varies from zero to four.

Level 0: Nonredundant

A RAID Level 0 system uses data striping to increase the maximum bandwidth avail-

able. No redundant information is maintained. While being the solution with the

lowest cost, reliability is a problem, since the MTTF decreases linearly with the num-

ber of disk drives in the array. RAID Level 0 has the best write performance of all

RAID levels, because absence of redundant information implies that no redundant in-

formation needs to be updated! Interestingly, RAID Level 0 does not have the best

read performance of all RAID levels, since systems with redundancy have a choice of

scheduling disk accesses as explained in the next section.

In our example, the RAID Level 0 solution consists of only four data disks. Independent

of the number of data disks, the effective space utilization for a RAID Level 0 system

is always 100 percent.

Level 1: Mirrored

A RAID Level 1 system is the most expensive solution. Instead of having one copy of

the data, two identical copies of the data on two different disks are maintained. This

type of redundancy is often called mirroring. Every write of a disk block involves a

write on both disks. These writes may not be performed simultaneously, since a global

system failure (e.g., due to a power outage) could occur while writing the blocks and

then leave both copies in an inconsistent state. Therefore, we always write a block on

one disk first and then write the other copy on the mirror disk. Since two copies of

each block exist on different disks, we can distribute reads between the two disks and

allow parallel reads of different disk blocks that conceptually reside on the same disk.

A read of a block can be scheduled to the disk that has the smaller expected access

time. RAID Level 1 does not stripe the data over different disks, thus the transfer rate

for a single request is comparable to the transfer rate of a single disk.

In our example, we need four data and four check disks with mirrored data for a RAID

Level 1 implementation. The effective space utilization is 50 percent, independent of

the number of data disks.

204 Chapter 7

Level 0+1: Striping and Mirroring

RAID Level 0+1—sometimes also referred to as RAID level 10—combines striping and

mirroring. Thus, as in RAID Level 1, read requests of the size of a disk block can be

scheduled both to a disk or its mirror image. In addition, read requests of the size of

several contiguous blocks benefit from the aggregated bandwidth of all disks. The cost

for writes is analogous to RAID Level 1.

As in RAID Level 1, our example with four data disks requires four check disks and

the effective space utilization is always 50 percent.

Level 2: Error-Correcting Codes

In RAID Level 2 the striping unit is a single bit. The redundancy scheme used is

Hamming code. In our example with four data disks, only three check disks are needed.

In general, the number of check disks grows logarithmically with the number of data

disks.

Striping at the bit level has the implication that in a disk array with D data disks,

the smallest unit of transfer for a read is a set of D blocks. Thus, Level 2 is good for

workloads with many large requests since for each request the aggregated bandwidth

of all data disks is used. But RAID Level 2 is bad for small requests of the size of

an individual block for the same reason. (See the example in Section 7.2.1.) A write

of a block involves reading D blocks into main memory, modifying D + C blocks and

writing D + C blocks to disk, where C is the number of check disks. This sequence of

steps is called a read-modify-write cycle.

For a RAID Level 2 implementation with four data disks, three check disks are needed.

Thus, in our example the effective space utilization is about 57 percent. The effective

space utilization increases with the number of data disks. For example, in a setup

with 10 data disks, four check disks are needed and the effective space utilization is 71

percent. In a setup with 25 data disks, five check disks are required and the effective

space utilization grows to 83 percent.

Level 3: Bit-Interleaved Parity

While the redundancy schema used in RAID Level 2 improves in terms of cost upon

RAID Level 1, it keeps more redundant information than is necessary. Hamming code,

as used in RAID Level 2, has the advantage of being able to identify which disk has

failed. But disk controllers can easily detect which disk has failed. Thus, the check

disks do not need to contain information to identify the failed disk. Information to

recover the lost data is sufficient. Instead of using several disks to store Hamming code,

Storing Data: Disks and Files 205

RAID Level 3 has a single check disk with parity information. Thus, the reliability

overhead for RAID Level 3 is a single disk, the lowest overhead possible.

The performance characteristics of RAID Level 2 and RAID Level 3 are very similar.

RAID Level 3 can also process only one I/O at a time, the minimum transfer unit is

D blocks, and a write requires a read-modify-write cycle.

Level 4: Block-Interleaved Parity

RAID Level 4 has a striping unit of a disk block, instead of a single bit as in RAID

Level 3. Block-level striping has the advantage that read requests of the size of a disk

block can be served entirely by the disk where the requested block resides. Large read

requests of several disk blocks can still utilize the aggregated bandwidth of the D disks.

The write of a single block still requires a read-modify-write cycle, but only one data

disk and the check disk are involved. The parity on the check disk can be updated

without reading all D disk blocks, because the new parity can be obtained by noticing

the differences between the old data block and the new data block and then applying

the difference to the parity block on the check disk:

NewParity = (OldData XOR NewData) XOR OldParity

The read-modify-write cycle involves reading of the old data block and the old parity

block, modifying the two blocks, and writing them back to disk, resulting in four disk

accesses per write. Since the check disk is involved in each write, it can easily become

the bottleneck.

RAID Level 3 and 4 configurations with four data disks require just a single check

disk. Thus, in our example, the effective space utilization is 80 percent. The effective

space utilization increases with the number of data disks, since always only one check

disk is necessary.

Level 5: Block-Interleaved Distributed Parity

RAID Level 5 improves upon Level 4 by distributing the parity blocks uniformly over

all disks, instead of storing them on a single check disk. This distribution has two

advantages. First, several write requests can potentially be processed in parallel, since

the bottleneck of a unique check disk has been eliminated. Second, read requests have

a higher level of parallelism. Since the data is distributed over all disks, read requests

involve all disks, whereas in systems with a dedicated check disk the check disk never

participates in reads.

206 Chapter 7

A RAID Level 5 system has the best performance of all RAID levels with redundancy

for small and large read and large write requests. Small writes still require a read-

modify-write cycle and are thus less efficient than in RAID Level 1.

In our example, the corresponding RAID Level 5 system has 5 disks overall and thus

the effective space utilization is the same as in RAID levels 3 and 4.

Level 6: P+Q Redundancy

The motivation for RAID Level 6 is the observation that recovery from failure of a

single disk is not sufficient in very large disk arrays. First, in large disk arrays, a

second disk might fail before replacement of an already failed disk could take place.

In addition, the probability of a disk failure during recovery of a failed disk is not

negligible.

A RAID Level 6 system uses Reed-Solomon codes to be able to recover from up to two

simultaneous disk failures. RAID Level 6 requires (conceptually) two check disks, but

it also uniformly distributes redundant information at the block level as in RAID Level

5. Thus, the performance characteristics for small and large read requests and for large

write requests are analogous to RAID Level 5. For small writes, the read-modify-write

procedure involves six instead of four disks as compared to RAID Level 5, since two

blocks with redundant information need to be updated.

For a RAID Level 6 system with storage capacity equal to four data disks, six disks

are required. Thus, in our example, the effective space utilization is 66 percent.

7.2.4 Choice of RAID Levels

If data loss is not an issue, RAID Level 0 improves overall system performance at

the lowest cost. RAID Level 0+1 is superior to RAID Level 1. The main application

areas for RAID Level 0+1 systems are small storage subsystems where the cost of

mirroring is moderate. Sometimes RAID Level 0+1 is used for applications that have

a high percentage of writes in their workload, since RAID Level 0+1 provides the best

write performance. RAID levels 2 and 4 are always inferior to RAID levels 3 and 5,

respectively. RAID Level 3 is appropriate for workloads consisting mainly of large

transfer requests of several contiguous blocks. The performance of a RAID Level 3

system is bad for workloads with many small requests of a single disk block. RAID

Level 5 is a good general-purpose solution. It provides high performance for large

requests as well as for small requests. RAID Level 6 is appropriate if a higher level of

reliability is required.

Storing Data: Disks and Files 207

7.3 DISK SPACE MANAGEMENT

The lowest level of software in the DBMS architecture discussed in Section 1.8, called

the disk space manager, manages space on disk. Abstractly, the disk space manager

supports the concept of a page as a unit of data, and provides commands to allocate

or deallocate a page and read or write a page. The size of a page is chosen to be the

size of a disk block and pages are stored as disk blocks so that reading or writing a

page can be done in one disk I/O.

It is often useful to allocate a sequence of pages as a contiguous sequence of blocks to

hold data that is frequently accessed in sequential order. This capability is essential

for exploiting the advantages of sequentially accessing disk blocks, which we discussed

earlier in this chapter. Such a capability, if desired, must be provided by the disk space

manager to higher-level layers of the DBMS.

Thus, the disk space manager hides details of the underlying hardware (and possibly

the operating system) and allows higher levels of the software to think of the data as

a collection of pages.

7.3.1 Keeping Track of Free Blocks

A database grows and shrinks as records are inserted and deleted over time. The

disk space manager keeps track of which disk blocks are in use, in addition to keeping

track of which pages are on which disk blocks. Although it is likely that blocks are

initially allocated sequentially on disk, subsequent allocations and deallocations could

in general create ‘holes.’

One way to keep track of block usage is to maintain a list of free blocks. As blocks are

deallocated (by the higher-level software that requests and uses these blocks), we can

add them to the free list for future use. A pointer to the first block on the free block

list is stored in a known location on disk.

A second way is to maintain a bitmap with one bit for each disk block, which indicates

whether a block is in use or not. A bitmap also allows very fast identification and

allocation of contiguous areas on disk. This is difficult to accomplish with a linked list

approach.

7.3.2 Using OS File Systems to Manage Disk Space

Operating systems also manage space on disk. Typically, an operating system supports

the abstraction of a file as a sequence of bytes. The OS manages space on the disk

and translates requests such as “Read byte i of file f” into corresponding low-level

208 Chapter 7

instructions: “Read block m of track t of cylinder c of disk d.” A database disk space

manager could be built using OS files. For example, the entire database could reside

in one or more OS files for which a number of blocks are allocated (by the OS) and

initialized. The disk space manager is then responsible for managing the space in these

OS files.

Many database systems do not rely on the OS file system and instead do their own

disk management, either from scratch or by extending OS facilities. The reasons

are practical as well as technical. One practical reason is that a DBMS vendor who

wishes to support several OS platforms cannot assume features specific to any OS,

for portability, and would therefore try to make the DBMS code as self-contained as

possible. A technical reason is that on a 32-bit system, the largest file size is 4 GB,

whereas a DBMS may want to access a single file larger than that. A related problem is

that typical OS files cannot span disk devices, which is often desirable or even necessary

in a DBMS. Additional technical reasons why a DBMS does not rely on the OS file

system are outlined in Section 7.4.2.

7.4 BUFFER MANAGER

To understand the role of the buffer manager, consider a simple example. Suppose

that the database contains 1,000,000 pages, but only 1,000 pages of main memory are

available for holding data. Consider a query that requires a scan of the entire file.

Because all the data cannot be brought into main memory at one time, the DBMS

must bring pages into main memory as they are needed and, in the process, decide

what existing page in main memory to replace to make space for the new page. The

policy used to decide which page to replace is called the replacement policy.

In terms of the DBMS architecture presented in Section 1.8, the buffer manager is

the software layer that is responsible for bringing pages from disk to main memory as

needed. The buffer manager manages the available main memory by partitioning it

into a collection of pages, which we collectively refer to as the buffer pool. The main

memory pages in the buffer pool are called frames; it is convenient to think of them

as slots that can hold a page (that usually resides on disk or other secondary storage

media).

Higher levels of the DBMS code can be written without worrying about whether data

pages are in memory or not; they ask the buffer manager for the page, and it is brought

into a frame in the buffer pool if it is not already there. Of course, the higher-level

code that requests a page must also release the page when it is no longer needed, by

informing the buffer manager, so that the frame containing the page can be reused.

The higher-level code must also inform the buffer manager if it modifies the requested

page; the buffer manager then makes sure that the change is propagated to the copy

of the page on disk. Buffer management is illustrated in Figure 7.3.

Storing Data: Disks and Files 209

If a requested page is not in the
pool and the pool is full, the
buffer manager’s replacement
policy controls which existing
page is replaced.

BUFFER POOL

disk page

MAIN MEMORY

DISK

Page requests from higher-level code

DB

free frame

Figure 7.3 The Buffer Pool

In addition to the buffer pool itself, the buffer manager maintains some bookkeeping

information, and two variables for each frame in the pool: pin count and dirty. The

number of times that the page currently in a given frame has been requested but

not released—the number of current users of the page—is recorded in the pin count

variable for that frame. The boolean variable dirty indicates whether the page has

been modified since it was brought into the buffer pool from disk.

Initially, the pin count for every frame is set to 0, and the dirty bits are turned off.

When a page is requested the buffer manager does the following:

1. Checks the buffer pool to see if some frame contains the requested page, and if so

increments the pin count of that frame. If the page is not in the pool, the buffer

manager brings it in as follows:

(a) Chooses a frame for replacement, using the replacement policy, and incre-

ments its pin count.

(b) If the dirty bit for the replacement frame is on, writes the page it contains

to disk (that is, the disk copy of the page is overwritten with the contents of

the frame).

(c) Reads the requested page into the replacement frame.

2. Returns the (main memory) address of the frame containing the requested page

to the requestor.

210 Chapter 7

Incrementing pin count is often called pinning the requested page in its frame. When

the code that calls the buffer manager and requests the page subsequently calls the

buffer manager and releases the page, the pin count of the frame containing the re-

quested page is decremented. This is called unpinning the page. If the requestor has

modified the page, it also informs the buffer manager of this at the time that it unpins

the page, and the dirty bit for the frame is set. The buffer manager will not read

another page into a frame until its pin count becomes 0, that is, until all requestors of

the page have unpinned it.

If a requested page is not in the buffer pool, and if a free frame is not available in the

buffer pool, a frame with pin count 0 is chosen for replacement. If there are many such

frames, a frame is chosen according to the buffer manager’s replacement policy. We

discuss various replacement policies in Section 7.4.1.

When a page is eventually chosen for replacement, if the dirty bit is not set, it means

that the page has not been modified since being brought into main memory. Thus,

there is no need to write the page back to disk; the copy on disk is identical to the copy

in the frame, and the frame can simply be overwritten by the newly requested page.

Otherwise, the modifications to the page must be propagated to the copy on disk.

(The crash recovery protocol may impose further restrictions, as we saw in Section 1.7.

For example, in the Write-Ahead Log (WAL) protocol, special log records are used to

describe the changes made to a page. The log records pertaining to the page that is to

be replaced may well be in the buffer; if so, the protocol requires that they be written

to disk before the page is written to disk.)

If there is no page in the buffer pool with pin count 0 and a page that is not in the

pool is requested, the buffer manager must wait until some page is released before

responding to the page request. In practice, the transaction requesting the page may

simply be aborted in this situation! So pages should be released—by the code that

calls the buffer manager to request the page—as soon as possible.

A good question to ask at this point is “What if a page is requested by several different

transactions?” That is, what if the page is requested by programs executing indepen-

dently on behalf of different users? There is the potential for such programs to make

conflicting changes to the page. The locking protocol (enforced by higher-level DBMS

code, in particular the transaction manager) ensures that each transaction obtains a

shared or exclusive lock before requesting a page to read or modify. Two different

transactions cannot hold an exclusive lock on the same page at the same time; this is

how conflicting changes are prevented. The buffer manager simply assumes that the

appropriate lock has been obtained before a page is requested.

Storing Data: Disks and Files 211

7.4.1 Buffer Replacement Policies

The policy that is used to choose an unpinned page for replacement can affect the time

taken for database operations considerably. Many alternative policies exist, and each

is suitable in different situations.

The best-known replacement policy is least recently used (LRU). This can be im-

plemented in the buffer manager using a queue of pointers to frames with pin count 0.

A frame is added to the end of the queue when it becomes a candidate for replacement

(that is, when the pin count goes to 0). The page chosen for replacement is the one in

the frame at the head of the queue.

A variant of LRU, called clock replacement, has similar behavior but less overhead.

The idea is to choose a page for replacement using a current variable that takes on

values 1 through N , where N is the number of buffer frames, in circular order. We

can think of the frames being arranged in a circle, like a clock’s face, and current as a

clock hand moving across the face. In order to approximate LRU behavior, each frame

also has an associated referenced bit, which is turned on when the page pin count goes

to 0.

The current frame is considered for replacement. If the frame is not chosen for replace-

ment, current is incremented and the next frame is considered; this process is repeated

until some frame is chosen. If the current frame has pin count greater than 0, then it

is not a candidate for replacement and current is incremented. If the current frame

has the referenced bit turned on, the clock algorithm turns the referenced bit off and

increments current—this way, a recently referenced page is less likely to be replaced.

If the current frame has pin count 0 and its referenced bit is off, then the page in it is

chosen for replacement. If all frames are pinned in some sweep of the clock hand (that

is, the value of current is incremented until it repeats), this means that no page in the

buffer pool is a replacement candidate.

The LRU and clock policies are not always the best replacement strategies for a

database system, particularly if many user requests require sequential scans of the

data. Consider the following illustrative situation. Suppose the buffer pool has 10

frames, and the file to be scanned has 10 or fewer pages. Assuming, for simplicity,

that there are no competing requests for pages, only the first scan of the file does any

I/O. Page requests in subsequent scans will always find the desired page in the buffer

pool. On the other hand, suppose that the file to be scanned has 11 pages (which is

one more than the number of available pages in the buffer pool). Using LRU, every

scan of the file will result in reading every page of the file! In this situation, called

sequential flooding, LRU is the worst possible replacement strategy.

212 Chapter 7

Buffer management in practice: IBM DB2 and Sybase ASE allow buffers to

be partitioned into named pools. Each database, table, or index can be bound

to one of these pools. Each pool can be configured to use either LRU or clock

replacement in ASE; DB2 uses a variant of clock replacement, with the initial clock

value based on the nature of the page (e.g., index nonleaves get a higher starting

clock value, which delays their replacement). Interestingly, a buffer pool client in

DB2 can explicitly indicate that it hates a page, making the page the next choice

for replacement. As a special case, DB2 applies MRU for the pages fetched in some

utility operations (e.g., RUNSTATS), and DB2 V6 also supports FIFO. Informix

and Oracle 7 both maintain a single global buffer pool using LRU; Microsoft SQL

Server has a single pool using clock replacement. In Oracle 8, tables can be bound

to one of two pools; one has high priority, and the system attempts to keep pages

in this pool in memory.

Beyond setting a maximum number of pins for a given transaction, there are

typically no features for controlling buffer pool usage on a per-transaction basis.

Microsoft SQL Server, however, supports a reservation of buffer pages by queries

that require large amounts of memory (e.g., queries involving sorting or hashing).

Other replacement policies include first in first out (FIFO) and most recently

used (MRU), which also entail overhead similar to LRU, and random, among others.

The details of these policies should be evident from their names and the preceding

discussion of LRU and clock.

7.4.2 Buffer Management in DBMS versus OS

Obvious similarities exist between virtual memory in operating systems and buffer

management in database management systems. In both cases the goal is to provide

access to more data than will fit in main memory, and the basic idea is to bring in

pages from disk to main memory as needed, replacing pages that are no longer needed

in main memory. Why can’t we build a DBMS using the virtual memory capability of

an OS? A DBMS can often predict the order in which pages will be accessed, or page

reference patterns, much more accurately than is typical in an OS environment, and

it is desirable to utilize this property. Further, a DBMS needs more control over when

a page is written to disk than an OS typically provides.

A DBMS can often predict reference patterns because most page references are gener-

ated by higher-level operations (such as sequential scans or particular implementations

of various relational algebra operators) with a known pattern of page accesses. This

ability to predict reference patterns allows for a better choice of pages to replace and

makes the idea of specialized buffer replacement policies more attractive in the DBMS

environment.

Storing Data: Disks and Files 213

Prefetching: In IBM DB2, both sequential and list prefetch (prefetching a list

of pages) are supported. In general, the prefetch size is 32 4KB pages, but this

can be set by the user. For some sequential type database utilities (e.g., COPY,

RUNSTATS), DB2 will prefetch upto 64 4KB pages. For a smaller buffer pool

(i.e., less than 1000 buffers), the prefetch quantity is adjusted downward to 16 or

8 pages. Prefetch size can be configured by the user; for certain environments, it

may be best to prefetch 1000 pages at a time! Sybase ASE supports asynchronous

prefetching of upto 256 pages, and uses this capability to reduce latency during

indexed access to a table in a range scan. Oracle 8 uses prefetching for sequential

scan, retrieving large objects, and for certain index scans. Microsoft SQL Server

supports prefetching for sequential scan and for scans along the leaf level of a B+

tree index and the prefetch size can be adjusted as a scan progresses. SQL Server

also uses asynchronous prefetching extensively. Informix supports prefetching with

a user-defined prefetch size.

Even more important, being able to predict reference patterns enables the use of a

simple and very effective strategy called prefetching of pages. The buffer manager

can anticipate the next several page requests and fetch the corresponding pages into

memory before the pages are requested. This strategy has two benefits. First, the

pages are available in the buffer pool when they are requested. Second, reading in a

contiguous block of pages is much faster than reading the same pages at different times

in response to distinct requests. (Review the discussion of disk geometry to appreciate

why this is so.) If the pages to be prefetched are not contiguous, recognizing that

several pages need to be fetched can nonetheless lead to faster I/O because an order

of retrieval can be chosen for these pages that minimizes seek times and rotational

delays.

Incidentally, note that the I/O can typically be done concurrently with CPU computa-

tion. Once the prefetch request is issued to the disk, the disk is responsible for reading

the requested pages into memory pages and the CPU can continue to do other work.

A DBMS also requires the ability to explicitly force a page to disk, that is, to ensure

that the copy of the page on disk is updated with the copy in memory. As a related

point, a DBMS must be able to ensure that certain pages in the buffer pool are written

to disk before certain other pages are written, in order to implement the WAL protocol

for crash recovery, as we saw in Section 1.7. Virtual memory implementations in

operating systems cannot be relied upon to provide such control over when pages are

written to disk; the OS command to write a page to disk may be implemented by

essentially recording the write request, and deferring the actual modification of the

disk copy. If the system crashes in the interim, the effects can be catastrophic for a

DBMS. (Crash recovery is discussed further in Chapter 20.)

214 Chapter 7

7.5 FILES AND INDEXES

We now turn our attention from the way pages are stored on disk and brought into

main memory to the way pages are used to store records and organized into logical

collections or files. Higher levels of the DBMS code treat a page as effectively being

a collection of records, ignoring the representation and storage details. In fact, the

concept of a collection of records is not limited to the contents of a single page; a file

of records is a collection of records that may reside on several pages. In this section,

we consider how a collection of pages can be organized as a file. We discuss how the

space on a page can be organized to store a collection of records in Sections 7.6 and

7.7.

Each record has a unique identifier called a record id, or rid for short. As we will see

in Section 7.6, we can identify the page containing a record by using the record’s rid.

The basic file structure that we consider, called a heap file, stores records in random

order and supports retrieval of all records or retrieval of a particular record specified

by its rid. Sometimes we want to retrieve records by specifying some condition on

the fields of desired records, for example, “Find all employee records with age 35.” To

speed up such selections, we can build auxiliary data structures that allow us to quickly

find the rids of employee records that satisfy the given selection condition. Such an

auxiliary structure is called an index; we introduce indexes in Section 7.5.2.

7.5.1 Heap Files

The simplest file structure is an unordered file or heap file. The data in the pages of

a heap file is not ordered in any way, and the only guarantee is that one can retrieve

all records in the file by repeated requests for the next record. Every record in the file

has a unique rid, and every page in a file is of the same size.

Supported operations on a heap file include create and destroy files, insert a record,

delete a record with a given rid, get a record with a given rid, and scan all records in

the file. To get or delete a record with a given rid, note that we must be able to find

the id of the page containing the record, given the id of the record.

We must keep track of the pages in each heap file in order to support scans, and

we must keep track of pages that contain free space in order to implement insertion

efficiently. We discuss two alternative ways to maintain this information. In each

of these alternatives, pages must hold two pointers (which are page ids) for file-level

bookkeeping in addition to the data.

Storing Data: Disks and Files 215

Linked List of Pages

One possibility is to maintain a heap file as a doubly linked list of pages. The DBMS

can remember where the first page is located by maintaining a table containing pairs

of 〈heap file name, page 1 addr〉 in a known location on disk. We call the first page

of the file the header page.

An important task is to maintain information about empty slots created by deleting a

record from the heap file. This task has two distinct parts: how to keep track of free

space within a page and how to keep track of pages that have some free space. We

consider the first part in Section 7.6. The second part can be addressed by maintaining

a doubly linked list of pages with free space and a doubly linked list of full pages;

together, these lists contain all pages in the heap file. This organization is illustrated

in Figure 7.4; note that each pointer is really a page id.

Header
page

Data Data

Data Data

page page

page page

with free space
Linked list of pages

full pages
Linked list of

Figure 7.4 Heap File Organization with a Linked List

If a new page is required, it is obtained by making a request to the disk space manager

and then added to the list of pages in the file (probably as a page with free space,

because it is unlikely that the new record will take up all the space on the page). If a

page is to be deleted from the heap file, it is removed from the list and the disk space

manager is told to deallocate it. (Note that the scheme can easily be generalized to

allocate or deallocate a sequence of several pages and maintain a doubly linked list of

these page sequences.)

One disadvantage of this scheme is that virtually all pages in a file will be on the free

list if records are of variable length, because it is likely that every page has at least a

few free bytes. To insert a typical record, we must retrieve and examine several pages

on the free list before we find one with enough free space. The directory-based heap

file organization that we discuss next addresses this problem.

216 Chapter 7

Directory of Pages

An alternative to a linked list of pages is to maintain a directory of pages. The

DBMS must remember where the first directory page of each heap file is located. The

directory is itself a collection of pages and is shown as a linked list in Figure 7.5. (Other

organizations are possible for the directory itself, of course.)

Data

page N

Data

page 1

page 2

Data

Header page

DIRECTORY

Figure 7.5 Heap File Organization with a Directory

Each directory entry identifies a page (or a sequence of pages) in the heap file. As the

heap file grows or shrinks, the number of entries in the directory—and possibly the

number of pages in the directory itself—grows or shrinks correspondingly. Note that

since each directory entry is quite small in comparison to a typical page, the size of

the directory is likely to be very small in comparison to the size of the heap file.

Free space can be managed by maintaining a bit per entry, indicating whether the

corresponding page has any free space, or a count per entry, indicating the amount of

free space on the page. If the file contains variable-length records, we can examine the

free space count for an entry to determine if the record will fit on the page pointed to

by the entry. Since several entries fit on a directory page, we can efficiently search for

a data page with enough space to hold a record that is to be inserted.

7.5.2 Introduction to Indexes

Sometimes we want to find all records that have a given value in a particular field. If

we can find the rids of all such records, we can locate the page containing each record

from the record’s rid; however, the heap file organization does not help us to find the

Storing Data: Disks and Files 217

rids of such records. An index is an auxiliary data structure that is intended to help

us find rids of records that meet a selection condition.

Consider how you locate a desired book in a library. You can search a collection of

index cards, sorted on author name or book title, to find the call number for the book.

Because books are stored according to call numbers, the call number enables you to

walk to the shelf that contains the book you need. Observe that an index on author

name cannot be used to locate a book by title, and vice versa; each index speeds up

certain kinds of searches, but not all. This is illustrated in Figure 7.6.

Where is

Where are
books by Asimov?

by Asimov

Foundation Nemesis

by Asimov

Index by Title

Index by Author

Foundation?

Figure 7.6 Indexes in a Library

The same ideas apply when we want to support efficient retrieval of a desired subset of

the data in a file. From an implementation standpoint, an index is just another kind

of file, containing records that direct traffic on requests for data records. Every index

has an associated search key, which is a collection of one or more fields of the file of

records for which we are building the index; any subset of the fields can be a search

key. We sometimes refer to the file of records as the indexed file.

An index is designed to speed up equality or range selections on the search key. For

example, if we wanted to build an index to improve the efficiency of queries about

employees of a given age, we could build an index on the age attribute of the employee

dataset. The records stored in an index file, which we refer to as entries to avoid

confusion with data records, allow us to find data records with a given search key

value. In our example the index might contain 〈age, rid 〉 pairs, where rid identifies a

data record.

The pages in the index file are organized in some way that allows us to quickly locate

those entries in the index that have a given search key value. For example, we have to

find entries with age ≥ 30 (and then follow the rids in the retrieved entries) in order to

find employee records for employees who are older than 30. Organization techniques,

or data structures, for index files are called access methods, and several are known,

218 Chapter 7

Rids in commercial systems: IBM DB2, Informix, Microsoft SQL Server,

Oracle 8, and Sybase ASE all implement record ids as a page id and slot number.

Sybase ASE uses the following page organization, which is typical: Pages contain

a header followed by the rows and a slot array. The header contains the page

identity, its allocation state, page free space state, and a timestamp. The slot

array is simply a mapping of slot number to page offset.

Oracle 8 and SQL Server use logical record ids rather than page id and slot number

in one special case: If a table has a clustered index, then records in the table are

identified using the key value for the clustered index. This has the advantage that

secondary indexes don’t have to be reorganized if records are moved across pages.

including B+ trees (Chapter 9) and hash-based structures (Chapter 10). B+ tree index

files and hash-based index files are built using the page allocation and manipulation

facilities provided by the disk space manager, just like heap files.

7.6 PAGE FORMATS *

The page abstraction is appropriate when dealing with I/O issues, but higher levels

of the DBMS see data as a collection of records. In this section, we consider how a

collection of records can be arranged on a page. We can think of a page as a collection

of slots, each of which contains a record. A record is identified by using the pair

〈page id, slot number〉; this is the record id (rid). (We remark that an alternative way

to identify records is to assign each record a unique integer as its rid and to maintain

a table that lists the page and slot of the corresponding record for each rid. Due to

the overhead of maintaining this table, the approach of using 〈page id, slot number〉

as an rid is more common.)

We now consider some alternative approaches to managing slots on a page. The main

considerations are how these approaches support operations such as searching, insert-

ing, or deleting records on a page.

7.6.1 Fixed-Length Records

If all records on the page are guaranteed to be of the same length, record slots are

uniform and can be arranged consecutively within a page. At any instant, some slots

are occupied by records, and others are unoccupied. When a record is inserted into

the page, we must locate an empty slot and place the record there. The main issues

are how we keep track of empty slots and how we locate all records on a page. The

alternatives hinge on how we handle the deletion of a record.

Storing Data: Disks and Files 219

The first alternative is to store records in the first N slots (where N is the number

of records on the page); whenever a record is deleted, we move the last record on the

page into the vacated slot. This format allows us to locate the ith record on a page by

a simple offset calculation, and all empty slots appear together at the end of the page.

However, this approach does not work if there are external references to the record

that is moved (because the rid contains the slot number, which is now changed).

The second alternative is to handle deletions by using an array of bits, one per slot,

to keep track of free slot information. Locating records on the page requires scanning

the bit array to find slots whose bit is on; when a record is deleted, its bit is turned

off. The two alternatives for storing fixed-length records are illustrated in Figure 7.7.

Note that in addition to the information about records on the page, a page usually

contains additional file-level information (e.g., the id of the next page in the file). The

figure does not show this additional information.

Slot 1

Slot 2

Slot N

Slot M

1

M

23M

Free
Space

Page

Header

01 1

Slot 3

Slot 2

Slot 1

Packed

Number of slotsNumber of records

N

Unpacked, Bitmap

Figure 7.7 Alternative Page Organizations for Fixed-Length Records

The slotted page organization described for variable-length records in Section 7.6.2 can

also be used for fixed-length records. It becomes attractive if we need to move records

around on a page for reasons other than keeping track of space freed by deletions. A

typical example is that we want to keep the records on a page sorted (according to the

value in some field).

7.6.2 Variable-Length Records

If records are of variable length, then we cannot divide the page into a fixed collection

of slots. The problem is that when a new record is to be inserted, we have to find an

empty slot of just the right length—if we use a slot that is too big, we waste space,

and obviously we cannot use a slot that is smaller than the record length. Therefore,

when a record is inserted, we must allocate just the right amount of space for it, and

when a record is deleted, we must move records to fill the hole created by the deletion,

220 Chapter 7

in order to ensure that all the free space on the page is contiguous. Thus, the ability

to move records on a page becomes very important.

The most flexible organization for variable-length records is to maintain a directory

of slots for each page, with a 〈record offset, record length〉 pair per slot. The first

component (record offset) is a ‘pointer’ to the record, as shown in Figure 7.8; it is the

offset in bytes from the start of the data area on the page to the start of the record.

Deletion is readily accomplished by setting the record offset to -1. Records can be

moved around on the page because the rid, which is the page number and slot number

(that is, position in the directory), does not change when the record is moved; only

the record offset stored in the slot changes.

N

1

16 2420

Record with rid = (i,1)

offset of record from

length = 24

2N

FREE SPACE

PAGE iDATA AREA

rid = (i,2)

rid = (i,N)

start of data area

Pointer to start
of free space

Number of entries
in slot directorySLOT DIRECTORY

Figure 7.8 Page Organization for Variable-Length Records

The space available for new records must be managed carefully because the page is not

preformatted into slots. One way to manage free space is to maintain a pointer (that

is, offset from the start of the data area on the page) that indicates the start of the

free space area. When a new record is too large to fit into the remaining free space,

we have to move records on the page to reclaim the space freed by records that have

been deleted earlier. The idea is to ensure that after reorganization, all records appear

contiguously, followed by the available free space.

A subtle point to be noted is that the slot for a deleted record cannot always be

removed from the slot directory, because slot numbers are used to identify records—by

deleting a slot, we change (decrement) the slot number of subsequent slots in the slot

directory, and thereby change the rid of records pointed to by subsequent slots. The

Storing Data: Disks and Files 221

only way to remove slots from the slot directory is to remove the last slot if the record

that it points to is deleted. However, when a record is inserted, the slot directory

should be scanned for an element that currently does not point to any record, and this

slot should be used for the new record. A new slot is added to the slot directory only

if all existing slots point to records. If inserts are much more common than deletes (as

is typically the case), the number of entries in the slot directory is likely to be very

close to the actual number of records on the page.

This organization is also useful for fixed-length records if we need to move them around

frequently; for example, when we want to maintain them in some sorted order. Indeed,

when all records are the same length, instead of storing this common length information

in the slot for each record, we can store it once in the system catalog.

In some special situations (e.g., the internal pages of a B+ tree, which we discuss in

Chapter 9), we may not care about changing the rid of a record. In this case the slot

directory can be compacted after every record deletion; this strategy guarantees that

the number of entries in the slot directory is the same as the number of records on the

page. If we do not care about modifying rids, we can also sort records on a page in an

efficient manner by simply moving slot entries rather than actual records, which are

likely to be much larger than slot entries.

A simple variation on the slotted organization is to maintain only record offsets in

the slots. For variable-length records, the length is then stored with the record (say,

in the first bytes). This variation makes the slot directory structure for pages with

fixed-length records be the same as for pages with variable-length records.

7.7 RECORD FORMATS *

In this section we discuss how to organize fields within a record. While choosing a way

to organize the fields of a record, we must take into account whether the fields of the

record are of fixed or variable length and consider the cost of various operations on the

record, including retrieval and modification of fields.

Before discussing record formats, we note that in addition to storing individual records,

information that is common to all records of a given record type (such as the number

of fields and field types) is stored in the system catalog, which can be thought of as

a description of the contents of a database, maintained by the DBMS (Section 13.2).

This avoids repeated storage of the same information with each record of a given type.

222 Chapter 7

Record formats in commercial systems: In IBM DB2, fixed length fields are

at fixed offsets from the beginning of the record. Variable length fields have offset

and length in the fixed offset part of the record, and the fields themselves follow

the fixed length part of the record. Informix, Microsoft SQL Server, and Sybase

ASE use the same organization with minor variations. In Oracle 8, records are

structured as if all fields are potentially variable length; a record is a sequence of

length–data pairs, with a special length value used to denote a null value.

7.7.1 Fixed-Length Records

In a fixed-length record, each field has a fixed length (that is, the value in this field

is of the same length in all records), and the number of fields is also fixed. The fields

of such a record can be stored consecutively, and, given the address of the record, the

address of a particular field can be calculated using information about the lengths of

preceding fields, which is available in the system catalog. This record organization is

illustrated in Figure 7.9.

F1 F2 F3 F4

L1 L2 L3 L4

Base address (B) Address = B+L1+L2

Li = Length of
 field i

Fi = Field i

Figure 7.9 Organization of Records with Fixed-Length Fields

7.7.2 Variable-Length Records

In the relational model, every record in a relation contains the same number of fields.

If the number of fields is fixed, a record is of variable length only because some of its

fields are of variable length.

One possible organization is to store fields consecutively, separated by delimiters (which

are special characters that do not appear in the data itself). This organization requires

a scan of the record in order to locate a desired field.

An alternative is to reserve some space at the beginning of a record for use as an array

of integer offsets—the ith integer in this array is the starting address of the ith field

value relative to the start of the record. Note that we also store an offset to the end of

the record; this offset is needed to recognize where the last field ends. Both alternatives

are illustrated in Figure 7.10.

Storing Data: Disks and Files 223

$ $ $ $F1 F2 F3 F4 Fi = Field i

Fields delimited by special symbol $

F1 F3 F4

Array of field offsets

F2

Figure 7.10 Alternative Record Organizations for Variable-Length Fields

The second approach is typically superior. For the overhead of the offset array, we

get direct access to any field. We also get a clean way to deal with null values. A

null value is a special value used to denote that the value for a field is unavailable or

inapplicable. If a field contains a null value, the pointer to the end of the field is set

to be the same as the pointer to the beginning of the field. That is, no space is used

for representing the null value, and a comparison of the pointers to the beginning and

the end of the field is used to determine that the value in the field is null.

Variable-length record formats can obviously be used to store fixed-length records as

well; sometimes, the extra overhead is justified by the added flexibility, because issues

such as supporting null values and adding fields to a record type arise with fixed-length

records as well.

Having variable-length fields in a record can raise some subtle issues, especially when

a record is modified.

Modifying a field may cause it to grow, which requires us to shift all subsequent

fields to make space for the modification in all three record formats presented

above.

A record that is modified may no longer fit into the space remaining on its page.

If so, it may have to be moved to another page. If rids, which are used to ‘point’

to a record, include the page number (see Section 7.6), moving a record to another

page causes a problem. We may have to leave a ‘forwarding address’ on this page

identifying the new location of the record. And to ensure that space is always

available for this forwarding address, we would have to allocate some minimum

space for each record, regardless of its length.

A record may grow so large that it no longer fits on any one page. We have to

deal with this condition by breaking a record into smaller records. The smaller

224 Chapter 7

Large records in real systems: In Sybase ASE, a record can be at most 1962

bytes. This limit is set by the 2 KB log page size, since records are not allowed to

be larger than a page. The exceptions to this rule are BLOBs and CLOBs, which

consist of a set of bidirectionally linked pages. IBM DB2 and Microsoft SQL

Server also do not allow records to span pages, although large objects are allowed

to span pages and are handled separately from other data types. In DB2, record

size is limited only by the page size; in SQL Server, a record can be at most 8 KB,

excluding LOBs. Informix and Oracle 8 allow records to span pages. Informix

allows records to be at most 32 KB, while Oracle has no maximum record size;

large records are organized as a singly directed list.

records could be chained together—part of each smaller record is a pointer to the

next record in the chain—to enable retrieval of the entire original record.

7.8 POINTS TO REVIEW

Memory in a computer system is arranged into primary storage (cache and main

memory), secondary storage (magnetic disks), and tertiary storage (optical disks

and tapes). Storage devices that store data persistently are called nonvolatile.

(Section 7.1)

Disks provide inexpensive, nonvolatile storage. The unit of transfer from disk

into main memory is called a block or page. Blocks are arranged on tracks on

several platters. The time to access a page depends on its location on disk. The

access time has three components: the time to move the disk arm to the de-

sired track (seek time), the time to wait for the desired block to rotate under the

disk head (rotational delay), and the time to transfer the data (transfer time).

(Section 7.1.1)

Careful placement of pages on the disk to exploit the geometry of a disk can

minimize the seek time and rotational delay when pages are read sequentially.

(Section 7.1.2)

A disk array is an arrangement of several disks that are attached to a computer.

Performance of a disk array can be increased through data striping and reliability

can be increased through redundancy. Different RAID organizations called RAID

levels represent different trade-offs between reliability and performance. (Sec-

tion 7.2)

In a DBMS, the disk space manager manages space on disk by keeping track of

free and used disk blocks. It also provides the abstraction of the data being a

collection of disk pages. DBMSs rarely use OS files for performance, functionality,

and portability reasons. (Section 7.3)

Storing Data: Disks and Files 225

In a DBMS, all page requests are centrally processed by the buffer manager. The

buffer manager transfers pages between the disk and a special area of main memory

called the buffer pool, which is divided into page-sized chunks called frames. For

each page in the buffer pool, the buffer manager maintains a pin count, which

indicates the number of users of the current page, and a dirty flag, which indicates

whether the page has been modified. A requested page is kept in the buffer pool

until it is released (unpinned) by all users. Subsequently, a page is written back to

disk (if it has been modified while in the buffer pool) when the frame containing

it is chosen for replacement. (Section 7.4)

The choice of frame to replace is based on the buffer manager’s replacement policy,

for example LRU or clock. Repeated scans of a file can cause sequential flooding

if LRU is used. (Section 7.4.1)

A DBMS buffer manager can often predict the access pattern for disk pages. It

takes advantage of such opportunities by issuing requests to the disk to prefetch

several pages at a time. This technique minimizes disk arm movement and reduces

I/O time. A DBMS also needs to be able to force a page to disk to ensure crash

recovery. (Section 7.4.2)

Database pages are organized into files, and higher-level DBMS code views the

data as a collection of records. (Section 7.5)

The simplest file structure is a heap file, which is an unordered collection of records.

Heap files are either organized as a linked list of data pages or as a list of directory

pages that refer to the actual pages with data. (Section 7.5.1)

Indexes are auxiliary structures that support efficient retrieval of records based on

the values of a search key. (Section 7.5.2)

A page contains a collection of slots, each of which identifies a record. Slotted

pages allow a record to be moved around on a page without altering the record

identifier or rid, a 〈page id, slot number〉 pair. Efficient page organizations exist

for either fixed-length records (bitmap of free slots) or variable-length records (slot

directory). (Section 7.6)

For fixed-length records, the fields can be stored consecutively and the address

of a field can be easily calculated. Variable-length records can be stored with

an array of offsets at the beginning of the record or the individual can be fields

separated by a delimiter symbol. The organization with an array of offsets offers

direct access to fields (which can be important if records are long and contain

many fields) and support for null values. (Section 7.7)

226 Chapter 7

EXERCISES

Exercise 7.1 What is the most important difference between a disk and a tape?

Exercise 7.2 Explain the terms seek time, rotational delay, and transfer time.

Exercise 7.3 Both disks and main memory support direct access to any desired location

(page). On average, main memory accesses are faster, of course. What is the other important

difference (from the perspective of the time required to access a desired page)?

Exercise 7.4 If you have a large file that is frequently scanned sequentially, explain how you

would store the pages in the file on a disk.

Exercise 7.5 Consider a disk with a sector size of 512 bytes, 2,000 tracks per surface, 50

sectors per track, 5 double-sided platters, average seek time of 10 msec.

1. What is the capacity of a track in bytes? What is the capacity of each surface? What is

the capacity of the disk?

2. How many cylinders does the disk have?

3. Give examples of valid block sizes. Is 256 bytes a valid block size? 2,048? 51,200?

4. If the disk platters rotate at 5,400 rpm (revolutions per minute), what is the maximum

rotational delay?

5. Assuming that one track of data can be transferred per revolution, what is the transfer

rate?

Exercise 7.6 Consider again the disk specifications from Exercise 7.5 and suppose that a

block size of 1,024 bytes is chosen. Suppose that a file containing 100,000 records of 100 bytes

each is to be stored on such a disk and that no record is allowed to span two blocks.

1. How many records fit onto a block?

2. How many blocks are required to store the entire file? If the file is arranged sequentially

on disk, how many surfaces are needed?

3. How many records of 100 bytes each can be stored using this disk?

4. If pages are stored sequentially on disk, with page 1 on block 1 of track 1, what is the

page stored on block 1 of track 1 on the next disk surface? How would your answer

change if the disk were capable of reading/writing from all heads in parallel?

5. What is the time required to read a file containing 100,000 records of 100 bytes each

sequentially? Again, how would your answer change if the disk were capable of read-

ing/writing from all heads in parallel (and the data was arranged optimally)?

6. What is the time required to read a file containing 100,000 records of 100 bytes each

in some random order? Note that in order to read a record, the block containing the

record has to be fetched from disk. Assume that each block request incurs the average

seek time and rotational delay.

Exercise 7.7 Explain what the buffer manager must do to process a read request for a page.

What happens if the requested page is in the pool but not pinned?

Storing Data: Disks and Files 227

Exercise 7.8 When does a buffer manager write a page to disk?

Exercise 7.9 What does it mean to say that a page is pinned in the buffer pool? Who is

responsible for pinning pages? Who is responsible for unpinning pages?

Exercise 7.10 When a page in the buffer pool is modified, how does the DBMS ensure that

this change is propagated to disk? (Explain the role of the buffer manager as well as the

modifier of the page.)

Exercise 7.11 What happens if there is a page request when all pages in the buffer pool are

dirty?

Exercise 7.12 What is sequential flooding of the buffer pool?

Exercise 7.13 Name an important capability of a DBMS buffer manager that is not sup-

ported by a typical operating system’s buffer manager.

Exercise 7.14 Explain the term prefetching. Why is it important?

Exercise 7.15 Modern disks often have their own main memory caches, typically about one

MB, and use this to do prefetching of pages. The rationale for this technique is the empirical

observation that if a disk page is requested by some (not necessarily database!) application,

80 percent of the time the next page is requested as well. So the disk gambles by reading

ahead.

1. Give a nontechnical reason that a DBMS may not want to rely on prefetching controlled

by the disk.

2. Explain the impact on the disk’s cache of several queries running concurrently, each

scanning a different file.

3. Can the above problem be addressed by the DBMS buffer manager doing its own prefetch-

ing? Explain.

4. Modern disks support segmented caches, with about four to six segments, each of which

is used to cache pages from a different file. Does this technique help, with respect to the

above problem? Given this technique, does it matter whether the DBMS buffer manager

also does prefetching?

Exercise 7.16 Describe two possible record formats. What are the trade-offs between them?

Exercise 7.17 Describe two possible page formats. What are the trade-offs between them?

Exercise 7.18 Consider the page format for variable-length records that uses a slot directory.

1. One approach to managing the slot directory is to use a maximum size (i.e., a maximum

number of slots) and to allocate the directory array when the page is created. Discuss

the pros and cons of this approach with respect to the approach discussed in the text.

2. Suggest a modification to this page format that would allow us to sort records (according

to the value in some field) without moving records and without changing the record ids.

228 Chapter 7

Exercise 7.19 Consider the two internal organizations for heap files (using lists of pages and

a directory of pages) discussed in the text.

1. Describe them briefly and explain the trade-offs. Which organization would you choose

if records are variable in length?

2. Can you suggest a single page format to implement both internal file organizations?

Exercise 7.20 Consider a list-based organization of the pages in a heap file in which two

lists are maintained: a list of all pages in the file and a list of all pages with free space. In

contrast, the list-based organization discussed in the text maintains a list of full pages and a

list of pages with free space.

1. What are the trade-offs, if any? Is one of them clearly superior?

2. For each of these organizations, describe a page format that can be used to implement

it.

Exercise 7.21 Modern disk drives store more sectors on the outer tracks than the inner

tracks. Since the rotation speed is constant, the sequential data transfer rate is also higher

on the outer tracks. The seek time and rotational delay are unchanged. Considering this in-

formation, explain good strategies for placing files with the following kinds of access patterns:

1. Frequent, random accesses to a small file (e.g., catalog relations).

2. Sequential scans of a large file (e.g., selection from a relation with no index).

3. Random accesses to a large file via an index (e.g., selection from a relation via the index).

4. Sequential scans of a small file.

PROJECT-BASED EXERCISES

Exercise 7.22 Study the public interfaces for the disk space manager, the buffer manager,

and the heap file layer in Minibase.

1. Are heap files with variable-length records supported?

2. What page format is used in Minibase heap files?

3. What happens if you insert a record whose length is greater than the page size?

4. How is free space handled in Minibase?

5. Note to Instructors: See Appendix B for additional project-based exercises.

BIBLIOGRAPHIC NOTES

Salzberg [564] and Wiederhold [681] discuss secondary storage devices and file organizations

in detail.

Storing Data: Disks and Files 229

RAID was originally proposed by Patterson, Gibson, and Katz [512]. The article by Chen

et al. provides an excellent survey of RAID [144] . Books about RAID include Gibson’s

dissertation [269] and the publications from the RAID Advisory Board [527].

The design and implementation of storage managers is discussed in [54, 113, 413, 629, 184].

With the exception of [184], these systems emphasize extensibility, and the papers contain

much of interest from that standpoint as well. Other papers that cover storage management

issues in the context of significant implemented prototype systems are [415] and [513]. The

Dali storage manager, which is optimized for main memory databases, is described in [345].

Three techniques for implementing long fields are compared in [83].

Stonebraker discusses operating systems issues in the context of databases in [626]. Several

buffer management policies for database systems are compared in [150]. Buffer management

is also studied in [101, 142, 223, 198].

